18º Seminário da RTCM, Coimbra, 21/02/2014

Optimização da arquitectura de rede para o transporte eficiente de video móvel

Sérgio Figueiredo, IT - UA

Daniel Corujo, IT - UA

Daniel Corujo, IT - UA

Rui L. Aguiar, IT - UA

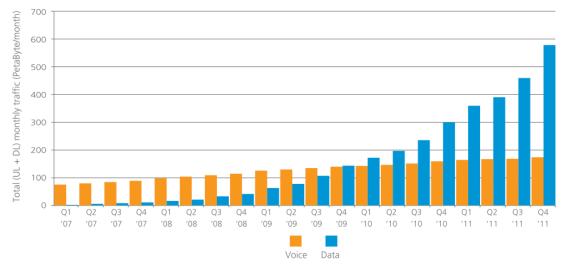
instituto de telecomunicações

creating and sharing knowledge for telecommunications

Outline

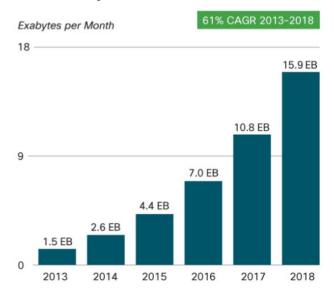
Motivation

Design Guidelines

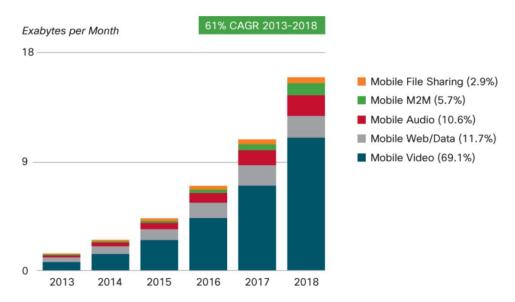

IP multicast mobility for seamless vídeo support

Contributions

Conclusions


Motivation

- Key facts:
 - Accessability to powerful, IPenabled devices
 - Faster networks and cheaper mobile data
 - → Easy access to video!


Akamai's "The State of the Internet, 4th Quarter, 2011 Report"

What to expect in the near future:

Source: Cisco VNI Mobile, 2014

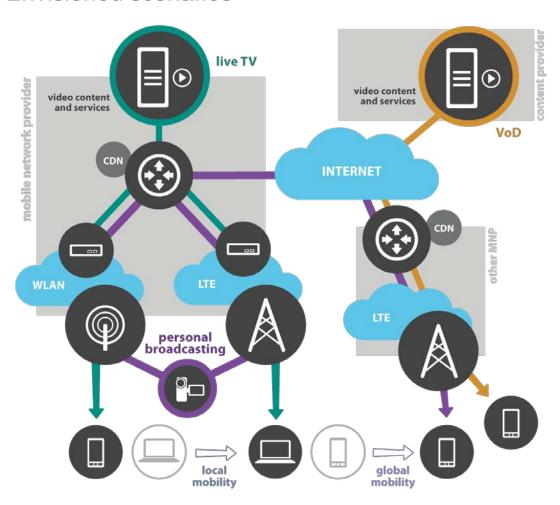
18º Seminário da RTCM Coimbra, 21/02/2014

Figures in parentheses refer to traffic share in 2018 Source: Cisco VNI Mobile, 2014

Motivation (2)

- IP video Broadcasting will (finally) emerge
 - Both Operators (e.g. Vodafone) and Industry (Ericsson, Qualcomm) companies are pushing eMBMS
 - Finally business cases seem to align with technology availability:
 E.g. Exciting conferences, popular sports or great concerts

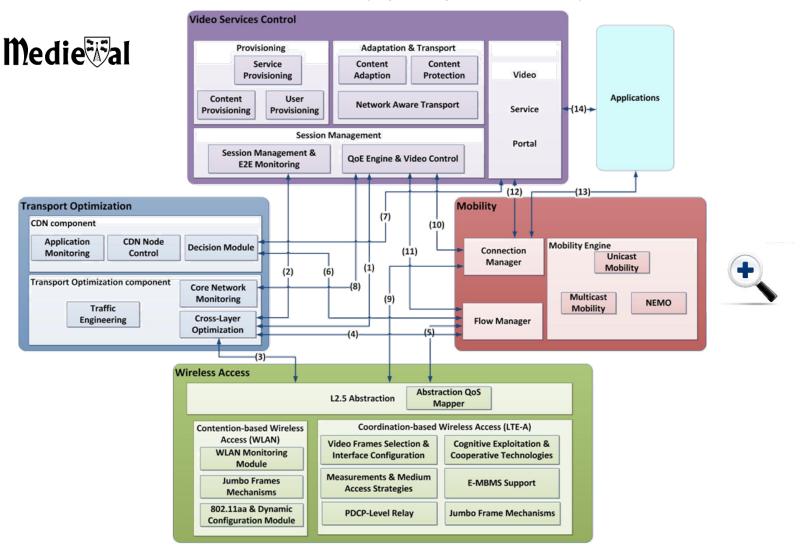
A bright future awaits mobile Operators and clients...



Motivation (3)

- Distinct attempts to alleviate the problem
 - IP offloading (LIPA, SIPTO)
 - Micro & femto-cells
 - Deployment of additional capacity
- Most solutions don't assure <u>network core</u> <u>efficiency</u>
 - They address access network offloading / congestion-control
 - Centralized mobility management (e.g. MIPv6, PMIPv6, GTP & PGW) "force" bottlenecking
- Problem expected to be magnified with:
 - Increase in video resolution: 4K, 8K video and other rich (e.g. biometric) data
 - More and more connected devices (M2M, IoT, IoE, the list goes on...)

Motivation (4)


Envisioned scenarios

18º Seminário da RTCM

Design guidelines

 Transport architectures featuring <u>video specific</u> enhancements at the <u>different layers</u> of the protocol stack and suitable for <u>commercial deployment</u> by mobile network operators

Zooming into Mobility Management

- Distributed and Dynamic Mobility Management (DDMM)
 - Distributed: positioning anchors at the edge of the network
 - Dynamic: activating mobility on-demand, not by default

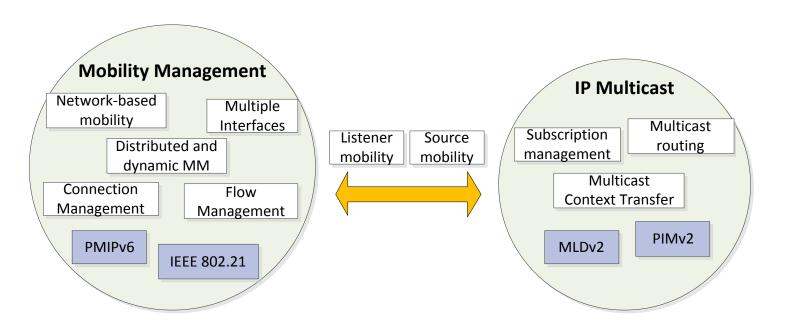
ADVANTAGES:

- DMM is a paradigm for flat architectures, enabling unified management of 3GPP and non-3GPP access networks (FMC)
- Optimal routing in a per-flow basis
- Minimizes potential for Single Point of Failure / core link bottlenecking

Zooming into Mobility Management (2)

- IP Multicast support in DDMM
 - Receiver mobility: Priority is to transfer multicast context to new network, and to synchronize frame by means of buffering, etc
 - Source mobility: Anchor flows close to the host, prevent any disruption to assure seamless service for all receivers
 - Both: Provide intelligence to multicast hosts for coping with mobility within heterogeneous scenarios

ADVANTAGES:

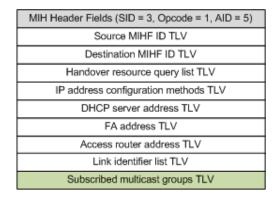

IP multicast efficiency is not compromised by IP mobility management

IP multicast mobility for seamless vídeo support

- 1. MIH-enhanced multicast mobility in PMIPv6
- 2. IP multicast in DMM
 - MLD Proxy @ Mobility entity
 - Multicast Router @ Mobility entity
- 3. Cross-layer multicast mobility for vídeo

IP multicast mobility for seamless vídeo support

The core of this work has been the enhancement and integration
 / orchestration of mechanisms towards the deployment of group-based video services

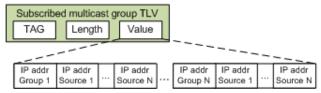

MIH-enhanced multicast mobility in PMIPv6

- Multicast listener mobility enabled for vertical handovers
 - Extending context transfer protocol with multicast information
 - Adding a new TLV to IEEE 802.21 messages

MIH_MN_HO_Candidate_Query.request

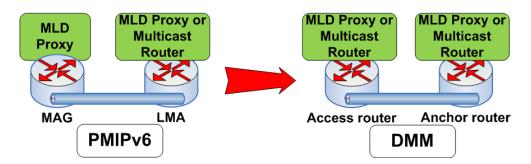
MIH Header Fields (SID = 3, Opcode = 1, AID = 5)		
Source MIHF ID TLV		
Destination MIHF ID TLV		
Link identifier TLV		
List of link PoA list TLV		
Handover resource query list TLV		
IP address configuration methods TLV		
DHCP server address TLV		
FA address TLV		
Access router address TLV		
Subscribed multicast groups TLV		

MIH_N2N_HO_Query_Resources.request



Used open-source tools:

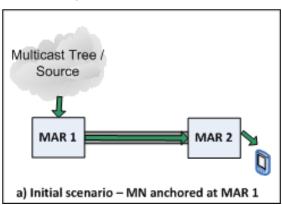
- *MRD6*



- Multicast source mobility (ASM or SSM)
 - Rely on Multicast Mobility Decision entity for "virtual anchoring"
 - I.e. Updating SPT up to MAG
 18º Seminário da RTCM

IP multicast in DMM – the problem with CMM

- In PMIPv6, either MLD Proxy (RFC6224, Base Solution) or Multicast Router
 @ MAG can be considered
- PMIPv6 Multicast Base Solution (RFC6224) limitations:
 - Tunnel convergence problem
 - Non-optimal routing



• Initial step: identify and analyze different possibilities for multicast support in future network-based DMM protocols

IP multicast in DMM w/ MLD Proxy

- Analogously to PMIPv6's Multicast Mobility Base Solution (RFC6224)
 - MLD Proxy @ MAR
 - Upstream link configured towards anchor MAR (same as LMA in PMIPv6)

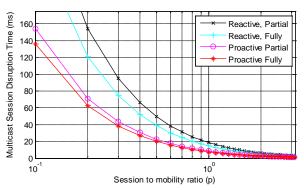
- Schemes are differentiated based on:
 - Distribution degree:
 - O Partially or Fully distributed
 - Proactiveness:
 - O Reactive or Proactive

Sergio Figueiredo, Seil Jeon, Rui L. Aguiar, "Use-cases Analysis for Multicast Listener Support in Network-based Distributed Mobility Management", Proc. 23rd IEEE PIMRC, Sydney, Australia, Sep 2012

IP multicast in DMM w/ MLD Proxy (2)

1) Service disruption time as function of SMR (Session to Mobility Ratio)

> High **Mobility**


> > Multicast Session Disruption Time (ms)

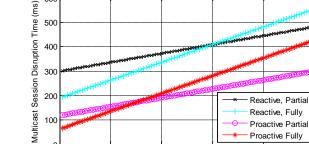
1200

1000

600 400

10⁻¹

Listener re-attachment time (ms)

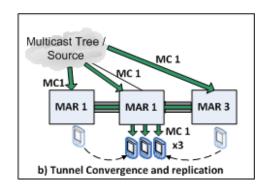

MAR-MAR delay (ms)

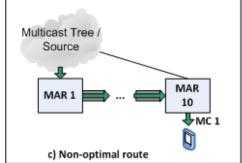
Proactive Fully

Low **Mobility**

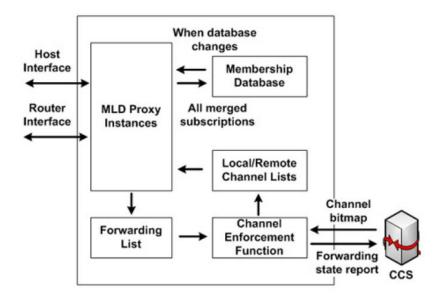
2) Service disruption time as function of re-attachment time

3) Service disruption time as function of tunnel traversal time


Reactive, Fully

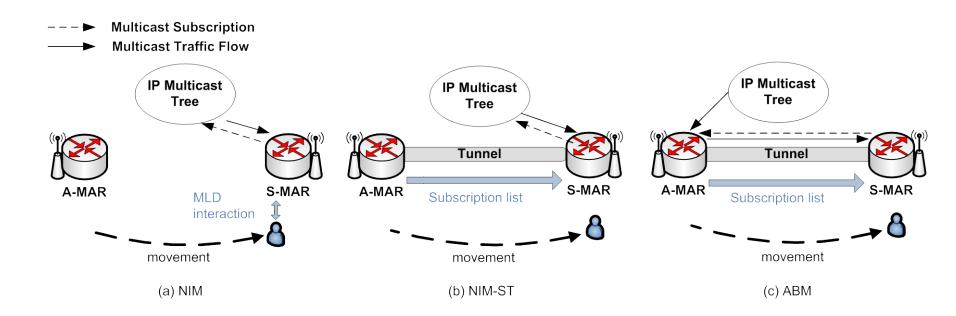

Proactive Fully

18º Seminário da RTCM


IP multicast in DMM – issues with MLD Proxy

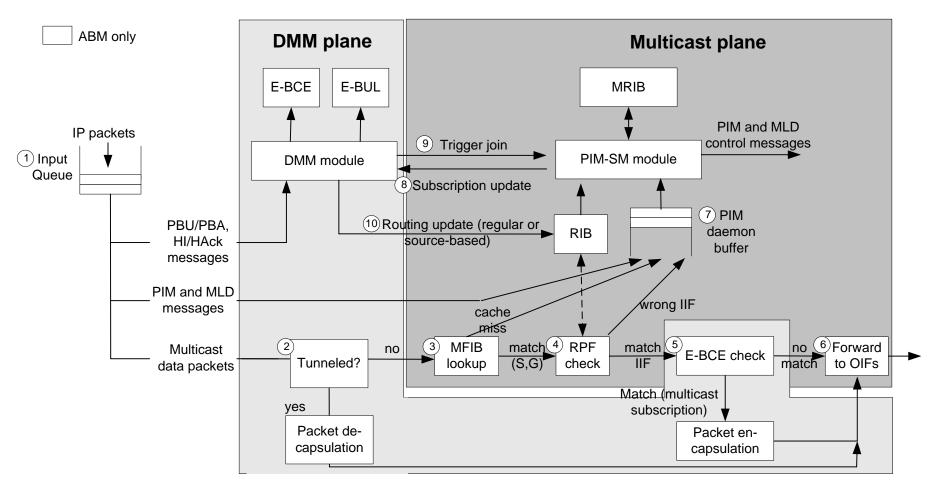
- Issues with MLD Proxy:
- Duplication & Tunnel convergence problem
- 2. Non-optimal routing

- Source of the problem:
 - Upstream interface configured towards anchor (as PMIPv6 Base solution)
- Alternative:
 - Configuration towards multicast infrastructure
- MNs will subscribe different channels at different times (thus different MARs):
- Solution: per-channel upstream configuration



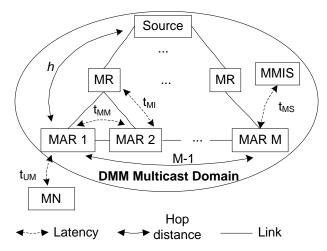
Seil Jeon, Sergio Figueiredo, Rui L. Aguiar, "A Channel-Manageable IP Multicast Support Framework for Distributed Mobility Management", Proc. IFIP Wireless Days 2012, Dublin, Ireland, Nov 2012

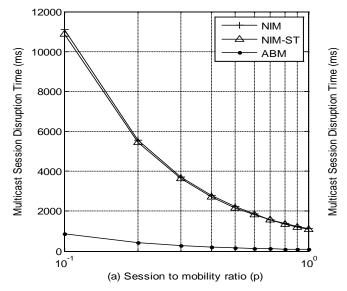
18º Seminário da RTCM

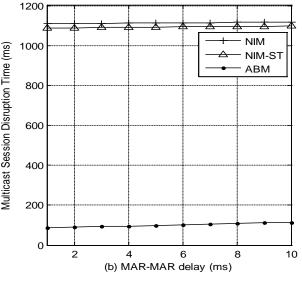

IP multicast in DMM w/ Multicast Router

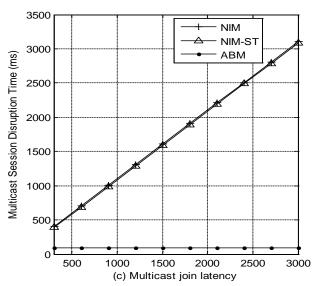
- Architecture preventing the occurrence of tunnel replication cost, and consisting of 3 schemes
- 1. Native IP Multicasting (NIM)
- 2. Native IP multicasting with subscription transfer (NIM-ST)
- 3. Anchor-based multicast transport (ABM)

IP multicast in DMM w/ Multicast Router (2)

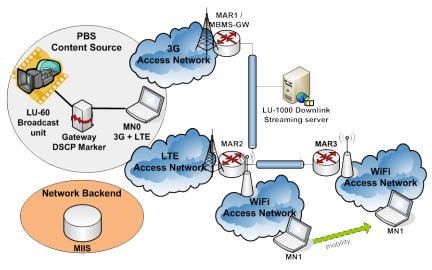

Integration between mobility and IP multicast routing planes

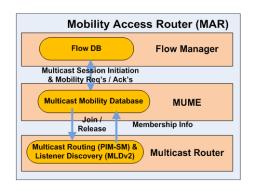


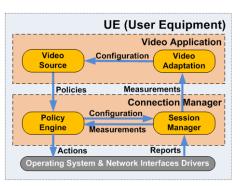

18º Seminário da RTCM


IP multicast in DMM w/ Multicast Router (3)

- 1. Subscription by multicast infrastructure originates an higher service disruption than using an anchored subscription
- 2. Leveraging on mobility tunnelling for multicast support during handover does not introduce significant overhead.






18º Seminário da RTCM

Cross-layer multicast mobility

Implementation of cross-layer solution:

Results "snippet":

Delay factor	Measured value (ms)	Std Deviation (ms)
$T_{DISRUPTION\ CXT}$	127.10	2.70
$T_{DISRUPTION_MLD}$	553.67	570.54

- S. Figueiredo et al, "Broadcasting User Content over Novel Mobile Networks", Proc. 2013 International Conference on Communications, Budapest, Jun 2013
- S Figueiredo, S Jeon, Rui L. Aguiar, "Empowering IP multicast for multimedia delivery over Heterogeneous Mobile Wireless Networks", Prc. 2014 INFOCOM Students Poster Session (accepted)

18º Seminário da RTCM

Contributions

- Conference Proceedings:
 - 9 publications in international conferences (ICC, PIMRC, INFOCOM student poster)
 - 2 ongoing journals
- Standardization bodies:
 - 1 draft in IETF MULTIMOB...
 - ... which led to contribution in IETF DMM's Requirements WG document
- Contribution to **Medie** al FP7 Project
 - Results on IP multicast mobility in DMM
 - Coordination of Demonstrator on "Personal Broadcasting Service", interleaving Connection Management, Flow Management and Session Management entities
 - Audit result: "Excellent"

Conclusions

- IP multicast will take a significant role in assuring efficient transport
 - In particular for demanding services as video
- Cross-information from the application, access network, transport and others is crucial for:
 - Seamless mobility
 - Intelligent traffic engineering

Ultimately, Quality of Experience preservation is achieved

Thanks for your attention!

Questions please?

Contact: sfigueiredo @ av . it . pt

http://atnog.av.it.pt/members/sfigueiredo

Acknowledgments

The research leading to the presented results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 258053 (MEDIEVAL project), and by FCT under grant SFRH / BD / 68507 / 2010

18º Seminário da RTCM