

Ad-hoc and Infrastructured Networks Interconnection

Tânia Pinto Calçada and Manuel Ricardo

RTCM - Aveiro 18th February 2005

INESC Porto Campus da FEUP R. Dr. Roberto Frias, nº 378 4200-465 Porto

e-mail www@inescporto.pt

internet

tel. 22 209 4000 fax 22 209 4050

Mobile Ad-hoc Networks (MANET)

- Temporary and spontaneous
- Dynamic topology
- No centralized administration
- Every terminal is a router
- Resources (energy, BW) are limited
 - Efficient routing required

- Hot Research topics related to ad-hoc networks:
 - QoS, security, charging, routing and mobility

Ad-hoc Routing Protocol Characteristics

- Distributed Operation
 - All nodes participate on route discovery and maintenance
- Routes to individual terminals and not to networks.
 - Not possible to aggregate routes
- Overhead efficiency: BW and energy
- Security: prevent selfish or malicious behaviours
- Operation approaches
 - Demand-based operation (e.g. AODV)
 - Adapt to traffic patterns on a demand basis; save energy and bandwidth
 - Proactive operation (e.g. OLSR)
 - Forwarding table has always an entry per node; small route discovery delay

AODV (RFC3561) - Ad-hoc On Demand Distance Vector

- Before sending a packet to a new destination
 - A RREQ message is disseminated
- _ Each node in the path caches a route back to originator
- RREP is unicast to the originator
 - From the destination or an intermediate node
- RERR sent to notify nodes when link loss occurs
- Every node in the path knows the route
 - To the destination and to the originator

Ad-hoc and Infrastructure Integration

- Extend the provider network to shadow areas
- Routing and mobility issues
 - Find the gateway to the Internet
 - Configure global IPv6 address (in the visited network)
 - Support multiple gateways
 - Distinguish ad-hoc from non ad-hoc destinations
 - Handover between gateways
- Our solution → GW_INFO
 - Based on draft-jelger-manet-gateway-autoconf-v6-02.txt
 - Many changes
 - User space daemon running on Access Routers and Mobile Terminals

GW INFO - Find the Gateway to the Infrastructured Network

- The Gateway is located in the Access Router
- Gateway periodically spreads a GW_INFO message
 - Gateway address (and prefix); distance to gateway
 - List of adjacent ad-hoc gateways (address, prefix)
- Each node selects an Upstream Neighbour (UN)
 - The next hop in the best path to the gateway
- Nodes forward GW_INFO msg received only from its UN
- Special propagation technique to avoid network flooding
- Prefix Continuity concept
 - _ Ensures every node in the best path to gateway uses same prefix

GW INFO - Configure Global IPv6 Address

• Without MIPv6

- Each node auto-configures a global address
- Prefix obtained by GW_INFO message
- _ IPv6 addr = Prefix (64 bits) + Interface ID (64 bits)

With MIPv6

- Avoid changes to MIPv6 implementation
- Create an internal false router advertisement (r_adv)
- MIPv6 implementation receives the r_adv
- MIPv6 configures the address, as usual
 - Gateway prefix + EUI or CGA; Performs Binding Updates

GW INFO - Distinguish Ad-hoc from non Ad-hoc Destinations

- Interface with CARD module at the ad-hoc GW / AR
- Obtain list of adjacent ARs supporting ad-hoc
- GW_INFO msg spread in MANET carries this list
- Each node is aware of adjacent MANET prefixes
- AODV used to get routes to adjacent MANETs
- Other destinations use the path to gateway
 - _ Through the Upstream Neighbor

GW INFO - Handover Between Ad-hoc Networks

- MANET attached to a single GW
 - Only MANETs attached to infrastructure considered
 - _ Different GW → Different MANET → Different prefix
- Prefix / gateway selection policies

_ Min distance (hop count); max stability (maintain GW as long as

The Problems - Summary

- To find the best gateway and to create a global IPv6 address
 - Lower costs; Shorter path (hops); Best QoS;
 - Stability: avoid to change gateway (minimize the no of handovers)
 - Interface with MIPv6: change CoA, necessary to BU to HA and CN
- To distinguish ad-hoc and non ad-hoc destinations
 - Optimize routes between ad-hoc nodes with different prefixes
 - Non ad-hoc destined packets are delivered to the gateway
 - Minimize overhead avoiding routing headers (tunneling)
- Handover
 - Switch between ad-hoc networks
 - Different gateway » Different prefix » Different ad-hoc network
 - Switch between ad-hoc and infra-structured operation modes

Work Carried out as a PhD Work – Expected Original Contributions

- Gateway Selection
 - Algorithm to select the best gateway
 - Considering the operation of multiple gateways simultaneously (multihoming)
- Handover
 - Efficient protocol to execute ad-hoc handover
 - Between ad-hoc networks
 - Between ad-hoc and infrastructured networks
- Interface with MIPv6
 - Method to interact with MIPv6 dealing with CoA creation
 - Optimization of the MIPv6 operation in ad-hoc networks
- Optimization of routing between ad-hoc clouds

Expected Results

Software module

provide internet access to ad-hoc nodes

Key features

- Efficiently find and select a gateway or gateways
- Configure global IP address considering MIPv6
- Routing protocol independent
- Ad-hoc handover
- MIPv6 signaling overhead optimization

